€ ? CODEDESIGN

Drive predictability through Software Design

st

Designing a Distributed System for ,
Florin Coros
Long-Term Development Florin@onCodeDesign.co‘m

linkedin.com/in/florincoros

€ #» CODEDESIGN

Drive predictability through Software Design

Florin Coros

Software Architect Consultant
Technical Trainer
Founder of Code Design

€ ? CODEDESIGN

Drive predictability through Software Design

st

Designing a Distributed System for ,
Florin Coros
Long-Term Development Florin@onCodeDesign.co‘m

linkedin.com/in/florincoros

Context: Grid Balancing and Energy Trading ()

Meore Consumption than Electricity Generation and Meore Electricity Generation

Electricity Generation Consumption are in Balance than Consumption

50Hz 50Hz 50Hz
HIGH Low m HIGH Low HIGH
| | hd
o “
Consumers
Consumers Generatol
Consumers Generators

Positive Balancing Energy Balanced Negative Balancing Energy

Balancing the Grid

Transmission System Operators (TSOs) and Balance Responsible Partners have the
critical task of maintaining balance in the power grid. This means balancing supply and
demand every second of every day. Measured in Hertz (50hz in Europe), maintaining
balance is crucial as significant deviations can lead to power outages and resulting
damages to society and infrastructure

- Be Resilient, Reliability, High Availability, No Data Loss

— Security
= Deploy in any Public Cloud and on Prem Data Centres
= Granular Deployments

oncodedesign.com/webinars/long-term-dev

from migodi.com

Long Term Development

feature
complete

» 10 to 18 months to release the 15t 5P | T ’

version in Prod

> > 3years of actively development to

“feature complete”

% invest in foundation vs deliver features
% team volatility & team scale-up
% adapt to changes in external systems APlIs

¢ CopeDEesIGN

oncodedesign.com/webinars/long-term-dev

Team Scaleup + Volatility

“Scale up the Team

« grow from ~2 — 3 developers to 12+

“Team Volatility

« people leaving and joining the team

oncodedesign.com/webinars/long-term-dev

Invest in Design. Build a Foundation, a Framework ()

completion

construction
ready

cumulative functionality

design payoff

time

http://martinfowler.com/bliki/DesignStaminaHypothesis.html
http://tinyurl.com/DesignPayoff

oncodedesign.com/webinars/long-term-dev

http://martinfowler.com/bliki/DesignStaminaHypothesis.html
http://tinyurl.com/DesignPayoff

Invest in Design. Build a Foundation, a Framework ()

months years
years decates

/\ /\

cumulative functionality

design payoff

time

1 [
go live features complete

oncodedesign.com/webinars/long-term-dev

Modular System - Concept

oncodedesign.com/webinars/long-term-dev

> Maintainability
> Extensibility
> Reusability

\

/

<>

CHANGE
PREDICTABILITY

How many services?

oncodedesign.com/webinars/long-term-dev

Cost or Effort

Minimum Cost

Costto

Integrate

Cost / Service

Number of services

>

from Righting Software by Juval Lowy

Contracts — Are Key in Modular Systems ‘X

Services communicate through Explicit Contracts

 Abstract the functions it provides

Contracts « Encapsulate (hide) the implementation details

Contracts described with language constructs:

« Operation Contracts — functions the interfaces
« Data Contracts — DTOs (the in/out params)

« Fault Contracts - Exceptions

oncodedesign.com/webinars/long-term-dev

Structu
re that Supports the Architecture

Use Cases

oncodedesi
sign.com/webinars/long-term-d
-dev

Taxotatus Taxotatus 1tem

H validations
if (DataTimeUtils.IsStar'tDateBeforeEr\dDate(iten.StartDate, itu.EndDate) ==

¥

/] check if some hotel period will overlap with another period

foreach (Hotel hotel in hotels)

TaxStatusesﬂotel tuﬁtatusesmtel'

if (1soverlapping)

ote In hoce

5

TaxStatusesHotel tuxStatusesHotel;
bool isoverlaw'mg = Iant:laningOverhppinngxstatus(hctel.ID, jtenm.1D, {tem.StartDa’
if (isoverlapping)

string erroriiessage = strir\g.ForHt(analize.GALocalhedResource("
taxStatusstntel.mtel.Hm,
taxsr.atusesﬂotel | TaxStatus MName ,
raxStatuse shotel | TaxStatus .startDate .ToShartDateString() .
raxstatuse eHotel. Taxstatus .EndDate .TnShortDateString(}) 3
throw new Validatiom‘-\idasxceptinn{stri.ng.Farnat(ermrH:ssnge, jtem.10)» gcreeniane

Y

base .Update(itel, true)s

Y

public void Balate'.ax%tat.;s(‘mng itenID)

TaxStatus item = 'DB.Tav.statuses,FirstOfDefanlt(: = c.ID == jtemID);
if (item == null)

throw new \Jalidaticm\idatxcegtinn(
string.Fomat(Lenali:s.Get\.ocnlizedkesource("Th:re 1s no object with such 10: ({0}

if (iten.StartDau <= DateTime Now)

throw new Validatinn»’\lda’ix:eptim(
Lccali:e.G:tLocnlitedResource(Localize.GetLocali:edﬂescurce(‘You cannot delete 2 P

}

base.Del:te(DB.TaxStatuses, itemID, true)s
/0B TaxStatuses .Remve(iten) 3
0B avechanges()s

throw new Validat‘xonAidaException(anali:e.G:tLocalizedResour:e("Start date cannot be
_._ist(ﬂoteh hotels = DB.TaxStatuseanteIs.uh:re(c = . TaxStatusi0 == iteu.m).Select(c =

H
bool Lsoverlapping = IsHotelnavinguverlnppingtaaétatus(hotel.I'n, item.10, jtem.StartDa

h such 10: ({e}

false)

Structure that Enforces
Explicit Communication through Contracts

. ~—Service 2 N
Servicel D Contracts
_ _J

Service Component

g J
~— Infrastructure V ¢ ~
Infrastructure Component Infrastructure Component
. J

oncodedesign.com/webinars/long-term-dev

Does it have to be DISTRIBUTED (micro-services)?

Monolith

Process

PortfolioService OrdersService

QuotationService

IPortfolioService
Process I

PortfolioService

Micro-services

inter-process:

oncodedesign.com/webinars/long-term-dev

Process

o IQuotationService

O
QuotationService

<>

|OrdersService
Process I

OrdersService

QuotationService

Team Scaleup — Code Ownership

Application Module

Application Module
[Application Module

Infrastructure Component

App Boot Infrastructure Component

<<Attribute>> e,— Infrastructure Component

ServiceAttribute

+ ServiceAttribute()
+ServiceAttribute(Type contract)
+ ServiceAttribute(Type t, Lifetime lifetime)

oncodedesign.com/webinars/long-term-dev

Common Structure and Conventions for ALL Services ()

Core \ DataService:

oncodedesign.com/webinars/long-term-dev

Separation of CONTRACTS from IMPLEMENTATION
FxbernalContracts by convention

Clean Architecture principles — colour codes
Conventions and mappings with folder structure
Conventions for Build and Deploy

Infrastructure categories

Services categories

Preferably same tech stack (.NET)

Common Structure and Conventions for ALL Services ()

—

- Gate/Tso

[—qlient servicesﬁ

J Tasks | Events |

——— Gate/Tso/xx

oncodedesign.com/webinars/long-term-dev

Separation of CONTRACTS from IMPLEMENTATION
FxternalContracts by convention

Clean Architecture principles — colour codes
Conventions and mappings with folder structure
Conventions for Build and Deploy

Infrastructure categories

Services categories

Categories of Services ‘X

Core Services implement the core behaviour

Integration Gateway Services communication with

External Systems

Integration

Utility Core Gateway

Services Services . .
Ext Clients provide REST API to customer apps

Utility Services just utilities that have nothing

specific to the business domain

oncodedesign.com/webinars/long-term-dev

App Infrastructure (Framework) of Tech Components ()

Application Sevices

C o meleteonme do not depend on Frameworks

El Kl CONSISTENCY + STRUCTURE

gRPC WEB AP > Identity Server -
ramewor

Frameworks / External SDK

HIDE COMPLEXITY

oncodedesign.com/webinars/long-term-dev

Implementing Clean Architecture through Structure ()

<<Attribute>>

ServiceAttribute

Data Access

Repositorylmpl

+ GetEntities<T>() : IQueriable()
+ SaveChanges()

Hide external frameworks to enforce the way they are used
Use assemblies and references among them to enforce rules
Enforce Constructor Dependency Injection that encourages Programming Against

Interfaces

oncodedesign.com/webinars/long-term=dev

https://github.com/iQuarc
https://github.com/iQuarc

Messaging over RabbitMQ

Application Sevices

Messaging

Endpoints Tasks

RabbitMQ

oncodedesign.com/webinars/long-term-dev

<>

Reliable Messaging across the
system

The developers that work on
application services do NOT need
to know the details and

complexity of RabbitMQ
« all types of Exchanges
* all types of Queues
« how construct the Routing Keys
« how to build the Headers
« Ack/Nack
« Transactions, Durability

Long Term Development ‘X

feature
complete

Challenges:

% invest in foundation vs deliver features
% team volatility & team scale-up 1
% adapt to changes in external systems APIs G Stoociiuch

oncodedesign.com/webinars/long-term-dev

€ #» CODEDESIGN

Drive predictability through Software Design

Designing a Distributed System
florin@onCodeDesign.com for Long_Term Development

linkedin.com/in/florincoros

oncodedesing.com/training

Software Architect Consultant
Technical Trainer

	Slide 1: Designing a Distributed System for Long-Term Development
	Slide 2
	Slide 3: Designing a Distributed System for Long-Term Development
	Slide 4: Context: Grid Balancing and Energy Trading
	Slide 5: Long Term Development
	Slide 6: Team Scaleup + Volatility
	Slide 7: Invest in Design. Build a Foundation, a Framework
	Slide 8: Invest in Design. Build a Foundation, a Framework
	Slide 9: Modular System - Concept
	Slide 10: How many services?
	Slide 11: Contracts – Are Key in Modular Systems
	Slide 12: Structure that Supports the Architecture
	Slide 13: Structure that Enforces Explicit Communication through Contracts
	Slide 14: Does it have to be DISTRIBUTED (micro-services)?
	Slide 15: Team Scaleup – Code Ownership
	Slide 16: Common Structure and Conventions for ALL Services
	Slide 17: Common Structure and Conventions for ALL Services
	Slide 18: Categories of Services
	Slide 19: App Infrastructure (Framework) of Tech Components
	Slide 20: Implementing Clean Architecture through Structure
	Slide 21: Messaging over RabbitMQ
	Slide 22: Long Term Development
	Slide 23

