
Florin Coroș

Drive predictability through Software Design

Designing a Distributed System for
Long-Term Development florin@onCodeDesign.com

linkedin.com/in/florincoros

oncodedesign.com/webinars/long-term-dev

Drive predictability through Software Design

oncodedesign.com/webinars/long-term-dev

Software Architect Consultant

Technical Trainer

Founder of Code Design

enjoing playing GO

enjoing traveling

Florin Coroș

Florin Coroș

Drive predictability through Software Design

Designing a Distributed System for
Long-Term Development florin@onCodeDesign.com

linkedin.com/in/florincoros

oncodedesign.com/webinars/long-term-dev

Context: Grid Balancing and Energy Trading

Balancing the Grid

Transmission System Operators (TSOs) and Balance Responsible Partners have the

critical task of maintaining balance in the power grid. This means balancing supply and

demand every second of every day. Measured in Hertz (50hz in Europe), maintaining

balance is crucial as significant deviations can lead to power outages and resulting

damages to society and infrastructure

→ Be Resilient, Reliability, High Availability, No Data Loss

→ Security

→ Deploy in any Public Cloud and on Prem Data Centres

→ Granular Deployments

→ …. ….. …. …..

from migodi.com

from ecotricity.co.uk

oncodedesign.com/webinars/long-term-dev

Long Term Development

➢ 10 to 18 months to release the 1st

version in Prod

➢ > 3 years of actively development to

“feature complete”

❖ invest in foundation vs deliver features

❖ team volatility & team scale-up

❖ adapt to changes in external systems APIs

oncodedesign.com/webinars/long-term-dev

Team Scaleup + Volatility

❖Scale up the Team

• grow from ~2 – 3 developers to 12+

❖Team Volatility

• people leaving and joining the team

oncodedesign.com/webinars/long-term-dev

Invest in Design. Build a Foundation, a Framework
cu

m
u

la
ti

ve
 f

u
n

ct
io

n
al

it
y

time

completion

construction
 ready

design payoff

http://martinfowler.com/bliki/DesignStaminaHypothesis.html
http://tinyurl.com/DesignPayoff

http://martinfowler.com/bliki/DesignStaminaHypothesis.html
http://tinyurl.com/DesignPayoff

oncodedesign.com/webinars/long-term-dev

Invest in Design. Build a Foundation, a Framework
cu

m
u

la
ti

ve
 f

u
n

ct
io

n
al

it
y

time

completion

construction
 ready

design payoff

go live features complete

months
years

years
decates

oncodedesign.com/webinars/long-term-dev

Modular System - Concept

➢Maintainability

➢Extensibility

➢Reusability

9

CHANGE
PREDICTABILITY

oncodedesign.com/webinars/long-term-dev

How many services?

from Righting Software by Juval Lowy

oncodedesign.com/webinars/long-term-dev

Contracts – Are Key in Modular Systems

Services communicate through Explicit Contracts

• Abstract the functions it provides

• Encapsulate (hide) the implementation details

Contracts described with language constructs:

• Operation Contracts – functions the interfaces

• Data Contracts – DTOs (the in/out params)

• Fault Contracts - Exceptions

oncodedesign.com/webinars/long-term-dev

Structure that Supports the Architecture

External
Interfaces

UI Frameworks
D

ev
ic

e
s

Controllers

EntitiesEntities

Use Cases

oncodedesign.com/webinars/long-term-dev

Structure that Enforces
Explicit Communication through Contracts

Service 1
Service 2

 Infrastructure

oncodedesign.com/webinars/long-term-dev

Does it have to be DISTRIBUTED (micro-services)?

Monolith Micro-services

IOrdersService

OrdersService

IPortfolioService

PortfolioService IQuotationService

QuotationService

in-process

inter-process

QuotationService

QuotationService

in-processin-process

OrdersServicePortfolioService

oncodedesign.com/webinars/long-term-dev

Team Scaleup – Code Ownership

<<Attribute>>

ServiceAttribute

+ ServiceAttribute()
+ServiceAttribute(Type contract)
+ ServiceAttribute(Type t, Lifetime lifetime)

oncodedesign.com/webinars/long-term-dev

Common Structure and Conventions for ALL Services

Core \ DataService

Controllers

Entities

Service Implementations

DTOs

DbContextFactory

FeServices
(Operation, Data, Fault)

Service Implementations

 Core \ Utilities
 Common

DataServices
(Operation, Data, Fault)

Abstractions /
IUserProfileData

Implementation

Separation of CONTRACTS from IMPLEMENTATION

ExternalContracts by convention

Clean Architecture principles – colour codes

Conventions and mappings with folder structure

Conventions for Build and Deploy

Infrastructure categories

Services categories

Preferably same tech stack (.NET)

oncodedesign.com/webinars/long-term-dev

Common Structure and Conventions for ALL Services

Separation of CONTRACTS from IMPLEMENTATION

ExternalContracts by convention

Clean Architecture principles – colour codes

Conventions and mappings with folder structure

Conventions for Build and Deploy

Infrastructure categories

Services categories

oncodedesign.com/webinars/long-term-dev

Categories of Services

Core Services implement the core behaviour

Integration Gateway Services communication with

 External Systems

Ext Clients provide REST API to customer apps

Utility Services just utilities that have nothing

 specific to the business domain

Core
Services

Integration
Gateway

Web Client Ext Clients

Utility
Services

oncodedesign.com/webinars/long-term-dev

App Infrastructure (Framework) of Tech Components

do not depend on Frameworks

CONSISTENCY + STRUCTURE

HIDE COMPLEXITY

Frameworks / External SDK

gRPC

RabbitMQ

WEB API

ASP.NET

Entity
Framework

. . . SDK

Identity Server . . .

Ext Service

Application Infrastructure

Application Sevices

oncodedesign.com/webinars/long-term-dev

/iQuarc

Implementing Clean Architecture through Structure

External
Interfaces

UI Frameworks

D
ev

ic
e

s

Controllers

EntitiesEntities

Use Cases

<<Attribute>><<Attribute>>

ServiceAttribute

RepositoryImpl

+ GetEntities<T>() : IQueriable()
+ SaveChanges()

Hide external frameworks to enforce the way they are used

Use assemblies and references among them to enforce rules

Enforce Constructor Dependency Injection that encourages Programming Against

Interfaces

/iQuarc

https://github.com/iQuarc
https://github.com/iQuarc

oncodedesign.com/webinars/long-term-dev

Messaging over RabbitMQ

Reliable Messaging across the

system

The developers that work on

application services do NOT need

to know the details and

complexity of RabbitMQ

• all types of Exchanges

• all types of Queues

• how construct the Routing Keys

• how to build the Headers

• Ack/Nack

• Transactions, DurabilityRabbitMQ

Topics

Exchanges

Fanout

Bindings

Headers

Routing Queues

Durable Ack/Nack

Quorum

Messaging

TasksEndpoints Events

Application Sevices

oncodedesign.com/webinars/long-term-dev

Long Term Development

Challenges:

❖ invest in foundation vs deliver features

❖ team volatility & team scale-up

❖ adapt to changes in external systems APIs

from ecotricity.co.uk

oncodedesign.com/webinars/long-term-dev

Drive predictability through Software Design

Designing a Distributed System
for Long-Term Developmentflorin@onCodeDesign.com

linkedin.com/in/florincoros

oncodedesing.com/training

oncodedesing.com/webinars/long-term-dev

calendly.com/florin-oncodedesign/short-call

Florin Coroș
Software Architect Consultant

Technical Trainer

	Slide 1: Designing a Distributed System for Long-Term Development
	Slide 2
	Slide 3: Designing a Distributed System for Long-Term Development
	Slide 4: Context: Grid Balancing and Energy Trading
	Slide 5: Long Term Development
	Slide 6: Team Scaleup + Volatility
	Slide 7: Invest in Design. Build a Foundation, a Framework
	Slide 8: Invest in Design. Build a Foundation, a Framework
	Slide 9: Modular System - Concept
	Slide 10: How many services?
	Slide 11: Contracts – Are Key in Modular Systems
	Slide 12: Structure that Supports the Architecture
	Slide 13: Structure that Enforces Explicit Communication through Contracts
	Slide 14: Does it have to be DISTRIBUTED (micro-services)?
	Slide 15: Team Scaleup – Code Ownership
	Slide 16: Common Structure and Conventions for ALL Services
	Slide 17: Common Structure and Conventions for ALL Services
	Slide 18: Categories of Services
	Slide 19: App Infrastructure (Framework) of Tech Components
	Slide 20: Implementing Clean Architecture through Structure
	Slide 21: Messaging over RabbitMQ
	Slide 22: Long Term Development
	Slide 23

