
Florin Coroș

Drive predictability through Software Design

Monolith or Microservices?
Designing Deploy-Time Flexibility for
Modular Systems

florin@onCodeDesign.com
linkedin.com/in/florincoros

oncodedesign.com/craft25/

Drive predictability through Software Design

oncodedesign.com/monolith-or-microservices/

Software Architect Consultant

Technical Trainer

Founder of Code Design

enjoing playing GO

enjoing traveling

Florin Coroș

Florin Coroș

Drive predictability through Software Design

Monolith or Microservices?
Designing Deploy-Time Flexibility for
Modular Systems

florin@onCodeDesign.com
linkedin.com/in/florincoros

oncodedesign.com/craft25/

From Monolith to Micro-services

Scalability

Reliability

Availability

Resilience

Maintainability

Testability

Modernization

Extensibility

Security

High Coupling

the MONOLITH

easy life Not good at

REDUNDANCY DECOMPOSITION

oncodedesign.com/craft25/

From Micro-services back to a Monolith

Micro-services

complexity

unnecessary complexity

Complex Communication

Performance

Complex Debugging & Diagnostics

Expensive Infrastructure

Maintainability

Testability

Not good because

UNNECESARY
COMPLEXITY DECOMPOSITION

oncodedesign.com/craft25/

History Repeats Itself

the MONOLITH Micro-services
easy life complex life

Maintainability
Testability

Modernization

Security
Performance

Scalability
Resilience
Reliability
AvailabilityNOT Enough unnecessary complexity

oncodedesign.com/craft25/

Modular System - Concept

➢Maintainability

➢Extensibility

➢Reusability

7

Separate the
Communication Concern

oncodedesign.com/craft25/

How many services?

from Righting Software by Juval Lowy

oncodedesign.com/craft25/

Contracts – Are Key in Modular Systems

Services communicate through Explicit Contracts

• Abstract the functions it provides

• Encapsulate (hide) the implementation details

Contracts described with language constructs:

• Operation Contracts – functions the interfaces

• Data Contracts – DTOs (the in/out params)

• Fault Contracts – Exceptions

Synchronous Communication – function calls

Asynchronous Communication – message based

oncodedesign.com/craft25/

Target: Design for Deploy-Time Flexibility

Decide ONLY at Deploy-Time if

deploy as a Monolith or

deploy as a Distributed System

without changing the code

without recompile the code

oncodedesign.com/craft25/

DEMO: In-Process / Inter-Process Communication

11

Client Service

oncodedesign.com/craft25/

DEMO: Simplified Example of Dependent Services

12

QuotationService

+ GetQuotations() : Quotations

IQuotationService

OrdersService

+ PlaceSellLimitOrder()

+ PlaceBuyLimitOrder()

+ GetLimitOrders() : LimitOrders

PortfolioService

+ GetPortfolioValue() : decimal

IPortfolioService

IOrdersService

oncodedesign.com/craft25/

Decide at Deployment between
Monolith or Micro-services

Monolith Micro-services

IOrdersService

OrdersService

IPortfolioService

PortfolioService

QuotationService

inter-process

IOrdersServiceIPortfolioService IQuotationService

QuotationService

in-processin-process

OrdersServicePortfolioService

oncodedesign.com/craft25/

Decide at Deployment between
Monolith or Micro-services

Micro-services Micro-services

IOrdersService

OrdersService

IPortfolioService

PortfolioService

QuotationService

inter-process

IOrdersService

OrdersService

IPortfolioService

PortfolioService IQuotationService

QuotationService

in-process

inter-process

QuotationService

oncodedesign.com/craft25/

Solution for Design for Deploy-Time Flexibility

The solution stands on Three Pillars

1. Depend only on CONTRACTS

written with abstract types

2. Use Proxies to forward the calls to

the actual implementation

3. Generic Hosts with Type Discovery

Modular System

oncodedesign.com/craft25/

Coding Demo

Github Repo:

Code-Design-Training /

InterProcessCommunication /

TradingApp

Demo build up blog posts:

oncodedesign.com/tag/communic

ation

https://github.com/onCodeDesign/Code-Design-Training/tree/bae1047146dc050ee6247f02625f67ee2c6435d7/InterProcessCommunication/TradingApp?ref=oncodedesign.com
https://oncodedesign.com/tag/communication
https://oncodedesign.com/tag/communication

oncodedesign.com/craft25/

Drive predictability through Software Design

Designing Deploy-Time
Flexibility for Modular Systems

florin@onCodeDesign.com

linkedin.com/in/florincoros

oncodedesing.com/training

oncodedesing.com/craft25

calendly.com/florin-oncodedesign/short-call

Florin Coroș
Software Architect Consultant

Technical Trainer

oncodedesign.com/craft25/

Demo Stage: Build up from Fat Client – ConsoleUI

QuotationService

in-processin-process

OrdersServicePortfolioService

tag: ipc-step06a

https://github.com/onCodeDesign/Code-Design-Training/tree/ipc-step06a

oncodedesign.com/craft25/

Demo Stage: Modular Monolith Deployment

QuotationService

in-processin-process

OrdersServicePortfolioService

IOrdersServiceIPortfolioService IQuotationService

QuotationService

in-processin-process

OrdersServicePortfolioService

tag: ipc-step07b

Disconnected Fat Client and Fat Backed

https://github.com/onCodeDesign/Code-Design-Training/tree/ipc-step07b

oncodedesign.com/craft25/

Demo Stage: Backend Monolith Deployment

IOrdersServiceIPortfolioService IQuotationService

QuotationService

in-processin-process

OrdersServicePortfolioService

inter-process

inter-process
inter-process

tag: ipc-step08b

https://github.com/onCodeDesign/Code-Design-Training/tree/ipc-step08b

oncodedesign.com/craft25/

Demo Stage: Modular Monolith Deployment

Connected Fat Client and Fat Backed

tag: ipc-step08b

IOrdersServiceIPortfolioService IQuotationService

QuotationService

in-processin-process

OrdersServicePortfolioService

inter-process inter-process inter-process

QuotationService

in-processin-process

OrdersServicePortfolioService

https://github.com/onCodeDesign/Code-Design-Training/tree/ipc-step08b

oncodedesign.com/craft25/

Demo Stage: Flexible Deployment

Micro-services Micro-services

tag: ipc-step10b

IOrdersService

OrdersService

IPortfolioService

PortfolioService
IQuotationService

QuotationService

in-process

inter-process

QuotationService

IOrdersService

OrdersService

IPortfolioService

PortfolioService

QuotationService

inter-process

https://github.com/onCodeDesign/Code-Design-Training/tree/ipc-step10b

oncodedesign.com/craft25/

Coding Demo

Github Repo:

Code-Design-Training /

InterProcessCommunication /

TradingApp

Demo build up blog posts:

oncodedesign.com/tag/communic

ation

https://github.com/onCodeDesign/Code-Design-Training/tree/bae1047146dc050ee6247f02625f67ee2c6435d7/InterProcessCommunication/TradingApp?ref=oncodedesign.com
https://oncodedesign.com/tag/communication
https://oncodedesign.com/tag/communication

oncodedesign.com/craft25/

Drive predictability through Software Design

Designing Deploy-Time
Flexibility for Modular Systems

florin@onCodeDesign.com

linkedin.com/in/florincoros

oncodedesing.com/training

oncodedesing.com/craft25

calendly.com/florin-oncodedesign/short-call

Florin Coroș
Software Architect Consultant

Technical Trainer

	Slide 1: Monolith or Microservices? Designing Deploy-Time Flexibility for Modular Systems
	Slide 2
	Slide 3: Monolith or Microservices? Designing Deploy-Time Flexibility for Modular Systems
	Slide 4: From Monolith to Micro-services
	Slide 5: From Micro-services back to a Monolith
	Slide 6: History Repeats Itself
	Slide 7: Modular System - Concept
	Slide 8: How many services?
	Slide 9: Contracts – Are Key in Modular Systems
	Slide 10: Target: Design for Deploy-Time Flexibility
	Slide 11: DEMO: In-Process / Inter-Process Communication
	Slide 12: DEMO: Simplified Example of Dependent Services
	Slide 13: Decide at Deployment between Monolith or Micro-services
	Slide 14: Decide at Deployment between Monolith or Micro-services
	Slide 15: Solution for Design for Deploy-Time Flexibility
	Slide 16: Coding Demo
	Slide 17
	Slide 18: Demo Stage: Build up from Fat Client – ConsoleUI
	Slide 19: Demo Stage: Modular Monolith Deployment
	Slide 20: Demo Stage: Backend Monolith Deployment
	Slide 21: Demo Stage: Modular Monolith Deployment
	Slide 22: Demo Stage: Flexible Deployment
	Slide 23: Coding Demo
	Slide 24

