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From Monolith to Micro-services

Scalability

Reliability

Availability

Resilience

Maintainability

Testability

Modernization

Extensibility

Security

High Coupling

the MONOLITH

easy life Not good at

REDUNDANCY DECOMPOSITION
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From Micro-services back to a Monolith

Micro-services

complexity

unnecessary complexity

Complex Communication

Performance

Complex Debugging & Diagnostics

Expensive Infrastructure

Maintainability

Testability

Not good because

UNNECESARY
COMPLEXITY DECOMPOSITION
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History Repeats Itself

the MONOLITH Micro-services
easy life complex life

Maintainability
Testability

Modernization

Security
Performance

Scalability
Resilience
Reliability
AvailabilityNOT Enough unnecessary complexity
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Modular System - Concept

➢Maintainability

➢Extensibility

➢Reusability

7

Separate the
Communication Concern
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How many services?

from Righting Software by Juval Lowy
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Contracts – Are Key in Modular Systems

Services communicate through Explicit Contracts

• Abstract the functions it provides

• Encapsulate (hide) the implementation details

Contracts described with language constructs:

• Operation Contracts – functions the interfaces

• Data Contracts – DTOs (the in/out params)

• Fault Contracts – Exceptions

Synchronous Communication – function calls

Asynchronous Communication – message based
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Target: Design for Deploy-Time Flexibility

Decide ONLY at Deploy-Time if 

deploy as a Monolith or 

deploy as a Distributed System

without changing the code

without recompile the code
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DEMO: In-Process / Inter-Process Communication

11

Client        Service
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DEMO: Simplified Example of Dependent Services

12

QuotationService

+ GetQuotations() : Quotations

IQuotationService

OrdersService

+ PlaceSellLimitOrder()

+ PlaceBuyLimitOrder()

+ GetLimitOrders() : LimitOrders

PortfolioService

+ GetPortfolioValue() : decimal

IPortfolioService

IOrdersService
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Decide at Deployment between 
Monolith or Micro-services

Monolith Micro-services

IOrdersService

OrdersService

IPortfolioService

PortfolioService

QuotationService

inter-process

IOrdersServiceIPortfolioService IQuotationService

QuotationService

in-processin-process

OrdersServicePortfolioService
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Decide at Deployment between 
Monolith or Micro-services

Micro-services Micro-services

IOrdersService

OrdersService

IPortfolioService

PortfolioService

QuotationService

inter-process

IOrdersService

OrdersService

IPortfolioService

PortfolioService IQuotationService

QuotationService

in-process

inter-process

QuotationService
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Solution for Design for Deploy-Time Flexibility

The solution stands on Three Pillars

1.  Depend only on CONTRACTS 

written with abstract types

2. Use Proxies to forward the calls to 

the actual implementation

3. Generic Hosts with Type Discovery

Modular System
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Coding Demo

Github Repo:

Code-Design-Training / 

InterProcessCommunication / 

TradingApp

Demo build up blog posts: 

oncodedesign.com/tag/communic

ation

https://github.com/onCodeDesign/Code-Design-Training/tree/bae1047146dc050ee6247f02625f67ee2c6435d7/InterProcessCommunication/TradingApp?ref=oncodedesign.com
https://oncodedesign.com/tag/communication
https://oncodedesign.com/tag/communication
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Demo Stage: Build up from Fat Client – ConsoleUI

QuotationService

in-processin-process

OrdersServicePortfolioService

tag: ipc-step06a

https://github.com/onCodeDesign/Code-Design-Training/tree/ipc-step06a
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Demo Stage: Modular Monolith Deployment

QuotationService

in-processin-process

OrdersServicePortfolioService

IOrdersServiceIPortfolioService IQuotationService

QuotationService

in-processin-process

OrdersServicePortfolioService

tag: ipc-step07b

Disconnected Fat Client and Fat Backed

https://github.com/onCodeDesign/Code-Design-Training/tree/ipc-step07b
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Demo Stage: Backend Monolith Deployment

IOrdersServiceIPortfolioService IQuotationService

QuotationService

in-processin-process

OrdersServicePortfolioService

inter-process

inter-process
inter-process

tag: ipc-step08b

https://github.com/onCodeDesign/Code-Design-Training/tree/ipc-step08b
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Demo Stage: Modular Monolith Deployment

Connected Fat Client and Fat Backed

tag: ipc-step08b

IOrdersServiceIPortfolioService IQuotationService

QuotationService

in-processin-process

OrdersServicePortfolioService

inter-process inter-process inter-process

QuotationService

in-processin-process

OrdersServicePortfolioService

https://github.com/onCodeDesign/Code-Design-Training/tree/ipc-step08b
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Demo Stage: Flexible Deployment

Micro-services Micro-services

tag: ipc-step10b

IOrdersService

OrdersService

IPortfolioService

PortfolioService
IQuotationService

QuotationService

in-process

inter-process

QuotationService

IOrdersService

OrdersService

IPortfolioService

PortfolioService

QuotationService

inter-process

https://github.com/onCodeDesign/Code-Design-Training/tree/ipc-step10b
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Coding Demo

Github Repo:

Code-Design-Training / 

InterProcessCommunication / 

TradingApp

Demo build up blog posts: 

oncodedesign.com/tag/communic
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